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Explicit analytical solutions of 2-D laminar natural convection
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Abstract

There are many natural convection processes in various fields, and it is still a hot topic to investigate the fluid

dynamics and heat transfer of natural convection. The analytical solutions are meaningful in both theoretical inves-

tigation and practical applications. Specially, they are very useful to computational fluid dynamics and heat transfer as

the benchmark solutions to check the numerical solutions and to develop numerical differencing schemes, grid gen-

eration methods and so forth. Two explicit analytical solutions of 2-D steady laminar natural convection along a

vertical porous plate and between two vertical plates were derived for better understanding the flow and heat transfer as

well as promoting the computational fluid dynamics and computational heat transfer.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection widely exists in a variety of

practical applications. In theoretical investigations of

natural convection, analytical solutions are of signifi-

cance. Many analytical solutions played a key role in

the early development of fluid mechanics as well as for

the heat conduction. However, the governing equations

of natural convection flow are nonlinear and coupled,

hence, it is highly difficult to obtain analytical solutions.

By authors� knowledge, no new explicit analytical solu-

tion of natural convection flow has been found in the

open literature for many years.

Besides their theoretical meaning, analytical solu-

tions can also be applied to check the accuracy,

convergence and effectiveness of various numerical

computation methods and to improve their differencing

schemes, grid generation ways and so on. The analytical

solutions are therefore very useful even for the newly

rapidly developing computational fluid dynamics and

heat transfer. For example, several analytical solutions

which can simulate the 3-D potential flow in turboma-

chine cascades were obtained by Cai et al. [1], and were

successfully used by some investigators in their numer-

ical calculation to check their computational techniques

and computer codes [1–4]. In addition, authors recently

presented some explicit analytical solutions of unsteady

compressible flow and heat transfer [5–14]. In this paper,

two algebraically explicit analytical solutions of 2-D

steady laminar natural convection are derived to de-

velop the theoretical understanding, and also, to serve as

the benchmark solutions for numerical calculations. The

derivation procedure in this paper is mainly based on the

method of separation variables with addition employed

by the authors in previous researches [7–14]. In this

method, to separate an unknown function f ðx; yÞ with
assumption f ¼ X ðxÞ þ Y ðyÞ instead of f ¼ X ðxÞ � Y ðyÞ
in common method. However, for a given analytical

solution, its correctness can be proven easily by substi-

tuting it into the governing equations.

2. Governing equations

The governing equations for 2-D steady laminar

natural convection with constant kinematic viscosity

and thermal diffusivity can be expressed as follows
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(neglecting dissipation heat, radiation and internal heat

source. The x-direction is opposite to the gravitation)

[15],
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With boundary layer assumption, the governing equa-

tions can be simplified as,
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If the solutions of boundary equations (2) satisfy fol-

lowing conditions: v ¼ const., u ¼ uðyÞ and h ¼ hðyÞ,
they are actually the solutions of original equations (1)

without boundary layer assumption.

3. Solution of natural convection along infinite vertical

porous plate

If the case of boundary layer is firstly considered and

the stream function w with u ¼ ow=oy and v ¼ �ðow=oxÞ
is introduced, the equation set (2) evolves to (the con-

tinuity equation is satisfied already),

ow
oy

o2w
oxoy

� ow
ox

o2w
oy2

¼ bgðh � h1Þ þ t
o3w
oy3

ð3aÞ

ow
oy

oh
ox

� ow
ox

oh
oy

¼ a
o2h
oy2

ð3bÞ

Assuming

w ¼ X1ðxÞ þ Y1ðyÞ; u ¼ Y 0
1ðyÞ and v ¼ �X 0

1ðxÞ ð4Þ

h ¼ X2ðxÞ þ Y2ðyÞ ð5Þ

yields the following equations derived from equation

set (3),
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If the following condition further holds true

X1 ¼ C1x; X 0
1 ¼ C1; v ¼ �C1 ð7Þ

the equation set (6a) and (6b) are simplified as,

�C1Y 00
1 ¼ bgðX2 þ Y2 � h1Þ þ tY 000

1 ð8aÞ

and
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The variables of Eqs. (8a) and (8b) can be separated,

X2 � h1 ¼ C2 ¼ �ðC1Y 00
1 þ tY 000

1 þ bgY2Þ=ðbgÞ ð9aÞ

X 0
2 ¼ ðaY 00

2 þ C1Y 0
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From the left-hand side of Eq. (9a), we have

X2 ¼ C2 þ h1 and X 0
2 ¼ 0 ð10Þ

Substituting Eq. (10) into Eq. (9b), the expression of Y2
is derived as,

Y2 ¼ �aC3e�ðC1=aÞy=C1 ð11Þ

With substitution of Eq. (11) into the right-hand side of

Eq. (9a), the expression of u ¼ Y 0
1 is deduced as,

u ¼ Y 0
1 ¼ �C3bga2e�ðC1=aÞy=½C3

1ð1� t=aÞ

� C4te�ðC1=tÞy=C1 � C2bgy=C1 þ C5 ð12Þ

and the expression of h is obtained by summing up Eqs.
(10) and (11):

h ¼ X2 þ Y2 ¼ h1 þ C2 � aC3e�ðC1=aÞy=C1 ð13Þ

Nomenclature

a thermal diffusivity

C constant

u velocity component in x direction
v velocity component in y direction
x abscissa

y coordinate

b coefficient of expansion

h temperature

t kinematic viscosity

W stream function

Subscripts

0; 1; 2; 3 . . . different constant

1 free stream
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Therefore, an algebraically explicit analytical solution

of governing equation set (2) is obtained, the velocity

field Eqs. (7) and (12) as well as the temperature field

Eq. (13).

When C1> 0, C2¼ 0 and C5¼C3bga2=½C3
1ð1� t=aÞ
þ

C4t=C1, this solution satisfies the boundary layer con-
dition along an infinite vertical cold porous plate,

y ¼ 0 : u ¼ 0; v ¼ �C1 and h ¼ h1 � C3a=C1

y ¼ 1 : u ¼ C5;
ou
oy

¼ 0 and h ¼ h1;
oh
oy

¼ 0

It represents the natural convection in a semi-infinite

space with boundary suction along an infinitely vertical

long cold porous plate. The horizontal velocity and the

suction velocity are constant, v ¼ �C1 in whole space.

Outside the boundary layer, both vertical velocity and

temperature are almost constant, or u � C5 and h � h1.

Owing to the suction effect, the boundary layer think-

ness is constant also and all parameters are functions of

coordinate y only due to the combined effects of suction
and cold natural convection.

The physical description of this solution and the

variations of u and h along y are given in Fig. 1 (the
vectors v are out of proportion to vectors u).

It should be emphasized that the parameters of this

solution are functions of y only and v is constant. So, the
solution is not only the solution of boundary layer but

also the solution of general laminar natural convection

equations.

When C2 6¼ 0, and C5 still equals to C3bga2= ½C3
1ð1�

t=aÞ
 þ C4t=C1, the solution represents the natural con-

vection between two parallel infinite vertical porous

plates. The right plate is cold and steady and similar to

the above mentioned case while the left plate is warmer

with h � h1 þ C2 when the distance between two plates
is wide enough, and it moves upward or downward with

a speed

uw � C5 � C2bgd=C1 � C3bga2e�ðC1=aÞd=½C3
1ð1� t=aÞ


� C4te�ðC1=tÞd=C1

where d is the distance between two plates.
The physical description of this case is shown in Fig.

2. When

C2 ¼ C1fC5 � ½�C3bga2e�ðC1=aÞd=½C3
1ð1� t=aÞ


� C4te�ðC1=tÞd=C1
g=ðbgdÞ

both plates are steady. Similar to previous case, there is

a horizontal velocity v ¼ �C1 through both porous

plates also.

If C1 < 0, the solution represents the laminar natural

convection between two parallel infinite vertical porous

plates having different temperatures moving up or down

(determined by the constants) with different speeds. One

simple example is shown in Fig. 3.

When C5 ¼ C3bga2=½C3
1ð1� t=aÞ
 þ C4t=C1, the right

plate is steady.

Fig. 1. The physical description of Eqs. (7), (12) and (13) with

C1 > 0 and C2 ¼ 0.

Fig. 2. The physical description of Eqs. (7), (12) and (13) with

C1 > 0 and C2 6¼ 0.

Fig. 3. The physical description of Eqs. (7), (12) and (13) with

C1 < 0.
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4. Solution of natural convection between two infinite solid

plates

In the derivation procedure of previous paragraph, if

C1 ¼ 0, another algebraically explicit analytical solution

can be easily deduced with Eqs. (9a) and (9b) as,

u ¼ bg½�C0y3=6þ ðh1 � C2Þy2=2þ C3y þ C4
=t
v ¼ 0

h ¼ C0y þ C2

9=
;

ð14Þ

This solution describes the natural convection between

two infinite parallel vertical solid plates. Generally, both

plates are moving. However, the right plate (y ¼ 0) will

be steady when C4 ¼ 0; and furthermore, the left plate

(y ¼ 1) will be steady also when C3 ¼ C0=6þ ðC2 � h1Þ=
2. The temperature linearly increases along horizontal

direction when C0 > 0.

Similar to previous situation, the solution is a solu-

tion of general laminar natural convection satisfying

equation set (1).

A graphical illustration of this solution is shown in

Fig. 4. The natural convection introduced by left hot

plate and right cold plate is evident.

5. Summary

Two new algebraically explicit analytical solutions of

2-D steady laminar natural convection are theoretically

obtained. By authors� knowledge, no such analytical

solutions are available in the open literature so far.

These solutions are valuable to the physical significance

for understanding of natural convection, especially to

the computational heat transfer as the benchmark so-

lutions to check the numerical solutions and to develop

the numerical computation approaches such as the dif-

ferencing schemes, grid generation methods and so

forth.
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